大家好,今天小编关注到一个比较有意思的话题,就是关于机器学习python实例的问题,于是小编就整理了3个相关介绍机器学习Python实例的解答,让我们一起看看吧。
机械专业转行学Python,有没有什么好的建议?
在真正系统学习Python之前,可以自己先看一些视频教程来入门,看自己是否真的喜欢这个行业,选对路很重要。先自学一段时间,如果学起来感觉还比较简单的话,在考虑系统的学习。
如果想系统学习的话,可以先到招聘网站上去了解一些Python相关岗位的任职。罗列出所需要学习的技术,哪些是重点,在学习的过程中重点关注。再给自己规划一条合适的学习线路,然后一步步慢慢来进行学习。
1、Python 入门基础
4、Python web开发及企业项目
如何学习作为机器学习基础的Python语言?
大概可以分成几个阶段。
第一个阶段,是掌握Python 基础技能。这可以按照一些教程和书籍来进行,比方说《笨方法学Pyhon》、廖雪峰的Python教程、《Python cookbook》等等。这一阶段的重点是多看多写代码,只有多看多写才能尽快熟悉。在这个阶段,还要熟悉一些常用的库,例如Numpy、pandas、matplotlib等等。这些可以按照文档或者在github上找到现成的文档和代码来学习。
第二个阶段,了解一些机器学习的基本内容。可以看MOOC,也可以买些相关书籍。吴恩达的机器学习教程很受欢迎,网上能找到***和笔记。
然后进入第三个阶段,把Python和机器学习结合在一起。可以自己尝试实现一些机器学习工具,例如k-均值聚类、决策树、线性回归、逻辑回归、支持向量机之类,要是自己实现不了也没有关系,毕竟github上有大量的代码可以参考学习。
别相信那些一上来给你推荐十来本几百页书或者资料的人!学python,十步!一,安装python3!二,Google查一下基本语法!三,Google一段简单的python代码跑一下,修改代码去理解基本语法!四,自己找一项目写代码,实战出高手!五,写代码!六,写代码!七,写代码!八,写代码!九,Google python的面向对象!十,GitHub上开一个自己的项目!
用python实现一些机器学习算法时是否需要自己写轮子?
这个得看你出于什么目的而学习机器学习的,如果只是出于工作的需要或者短时间的应用,那你只需要使用框架来实现机器学习的算法就可以了,这些框架都有sklearn(标准机器学习库),tensorflow,pytorch等,这些框架各有各的缺点和优点,看需要来决定用哪种,这样就不用自己造轮子了,只需要理解其算法过程与框架算法的实现函数就能实现机器学习算法,是不是很过瘾?还有一种情况就是出于自身兴趣而学习的机器学习,我想大部分学习机器学习的程序员都是出于兴趣,既然是兴趣,那就会想着靠自己一步一步来实现这些算法,以便理解其算法原理,实现过程,还可以加深算法的印象,真正的掌握该算法,实现之后自己还会有很高的成就感,觉得自己真是太厉害了有木有?反正我就这种感觉,不过我只是自己实现了手写数字的神经网络识别算法,其识别率还蛮可观的。
如果你想深入机器学习领域,那你就应该自己至少造一次轮子,以便真正掌握该算法,之后的使用不想造轮子了可以使用框架来实现。如果只是短时间的应用,那就用框架吧,很快就能看到实现效果,还不用自己造轮子呢,方便,快速。
祝你好运!
sklearn、TensorFlow(包括TensorFlow的高层封装Keras)、PyTorch……Python有这么多优秀的库,实现各种机器学习算法很方便,何必要自己造轮子呢?
(图片来源:tertiarycourses***.sg)
你可以看看最近发表的机器学习算法方面的论文,很多论文都开源了配套的代码,这些代码基本都是基于各种框架实现模型,几乎看不到从头自己造轮子实现的。
自己造轮子,不仅写起来麻烦(这还***设你造的轮子语义上没有[_a***_]、性能上也不差),别人阅读起来也不方便。
很多人过分推崇从头写起(write X from scratch),恨不得什么都自己写,不屑于使用TensorFlow等框架。但是,TensorFlow不用,那numpy用不用呢?所以说,这种想法其实不可取。
当然,这也不是绝对的,以下情形属于例外:
- 基于学习的目的,加深对基本概念/模块的理解。比如用框架写的话,像反向传播之类的轮子都是现成的。脱离框架自己手写,可以更好地理解这些基本概念/模块。
- 基于性能需求进行优化,比如,使用了特殊的硬件,或者应用场景非常特殊,现有的轮子不能用或者不好用。
- 应付面试。其实这个可以归入第一条。因为之所以有些面试会设置脱离框架手写算法的题目,就是为了看你对基本概念/模块的理解程度。
目前机器学习主要有两种形态,其一是搞算法,主力是世界上知名大学(学院派)如MIT,大公司的发paper的核心团队,如google。他们基本都是名校毕业的博士或在职的教授,为大家造轮子;其二是工程应用,自动驾驶,医疗图像,城市公共交通,语音识别等等,主要是要快速把算法变现为可执行工程项目,绝大部分都是拿轮子直接用。
那么是不是我们做工程的就一定不用做轮子了?那到不是,根据项目需求,改造轮子或重新造轮子都是可能的。
不需要。
原因之一:Python有它非常强大并且开源的免费库,这是Python语言为什么要优于其他语言的原因。
原因之二:我们只需要找到相对应的库进行加以修改即可。
原因之三:现在机器学习的算法大多都已成熟,我们没有必要重新研究别人已经研究出来的算法,浪费时间,得不偿失。
然而,如果设计的新算法时,我推荐在已有的算法基础升级会更好,因为从无到有毕竟是很困难的。
到此,以上就是小编对于机器学习python实例的问题就介绍到这了,希望介绍关于机器学习python实例的3点解答对大家有用。